

A New Class of Methylcelluloses for Ceramic Extrusion at Elevated Temperatures which provides higher Shape Retention

ECerS XII, 12th Conference of the European Ceramic Society Stockholm, 19-23 June 2011

1 Introduction

Main plasticizing agents for the extrusion of ceramics:

- Methylcellulose (MC)
- Hydroxypropylmethyl cellulose (HPMC)
- Hydroxyethylmethyl cellulose (HEMC)

Main properties of Methylcellulose (MC):

- Viscosity
- . Degree of Substitution (DS)
- · Reversible Thermal Gelation
- Water retention
- Film formation
- · Stickiness, lubrication, plasticization
- Rheology

2 Reversible Thermal Gelation

MC forms strong gels at high temperature

HPMC/HEMC forms a weak gel structure at high temperature

3 Degree of Substitution (DS) of MC

Average "Degree of Substitution" (DS):

- Indicates how many hydroxyl groups of an anhydroglucose unit are etherified on average
- DS-values: theoretically 0-3, in reality 1.3-2.2

Example:

DS (Me) = 2

- DS (Me) of commercially available MC: 1.64- 1.92
- DS (Me) of this newly developed MC: 1.4-1.5

4 Problem Description I

Extrusion of a ceramic paste above the gelation temperature leads to defect formation

5 Problem Description II

Increasing MC-addition rates lead to lower gelation temperatures: e.g. at 5 pph: gelation at room temperature

- → better cooling required
 Limited cooling capacity requires speed reduction
- More intensive cooling requires more energy (on industrial scale often electrical water cooling)

6 Solution: MC's with a reduced DS (Me)

- The gelation temperature increases with decreasing DS (Me)
- A DS (Me) of 1.54 and lower leads to larger "temperature windows" for extrusion

7 Evaluation of the Wet Green Performance

Extruded pastes behave mainly plastic, however, in a certain range of deformation they behave linear-elastic.

Hooks law is valid. Typical stress-strain curve of a deforming solid allows evaluation of:

- •Wet green (bending) modulus (Youngs modulus)
- •Wet green (bending) strength
- •Wet green elongation at break

8 Results of Wet Green Testing

DS (Me)	Modulus (MPas)	Elongation at Break	Comment
1.78	1.20	0.245	Trade product
1.49	1.44	0.291	Development
1.41	1.62	0.245	Development

- The lower the DS (Me), the higher the modulus
- The lower the DS (Me), the lower the wet green elongation at break
- No visible effect of the DS (Me) on the wet green strength

9 Final Conclusions

Current MC-trade products used as plasticizer in the extrusion of ceramics do have limitations:

A low gelation temperature that can lead to defect formation during extrusion

To overcome this difficulties the DS (Me) of the MC was reduced leading to $\,$

- a gelation temperature up to 40°C higher
- the option to extrude at significant higher temperatures
- the option to extrude at significant higher speeds
- a ceramic paste having a higher wet green modulus → higher shape retention of the profile
- a minor elongation at break